If it's not what You are looking for type in the equation solver your own equation and let us solve it.
a^2-14a+36=0
a = 1; b = -14; c = +36;
Δ = b2-4ac
Δ = -142-4·1·36
Δ = 52
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$a_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$a_{2}=\frac{-b+\sqrt{\Delta}}{2a}$
The end solution:
$\sqrt{\Delta}=\sqrt{52}=\sqrt{4*13}=\sqrt{4}*\sqrt{13}=2\sqrt{13}$$a_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(-14)-2\sqrt{13}}{2*1}=\frac{14-2\sqrt{13}}{2} $$a_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(-14)+2\sqrt{13}}{2*1}=\frac{14+2\sqrt{13}}{2} $
| -7+4m=-2m-1 | | 4(k+87)=-20 | | (x)5=12x | | 1/5+p=13 | | 13+8k=k-8 | | 7(b+9)=9(b+7) | | y-40/7=6 | | g−/94-2=-2 | | 1+p+4+6p=2p-5 | | 5a=-76 | | u/2-24=-18 | | 5x+540-10x=380 | | 3x-80=90 | | -4+6n=8+4n | | 51=3(f-52) | | 270-5x+10x=380 | | f/4-2=4 | | 7+4a=8+4a | | 2(v-8)-5v=-37 | | 13x-390=7x | | 11+a=5a-5 | | -k+11=k-5 | | -9+5x=6x-4 | | 2x+-19=3(x+-5) | | x+3=x+6-1 | | 1+4n=-3n+1 | | 3r-4=2r-1 | | 6x-4=14-100 | | 2x*x1=10 | | 7+1/3∙x=1.6÷6/11 | | 5y-4y+18=3y+2 | | -5(3y+1)-2y=3(y-6)-3 |